Государственное автономное образовательное учреждение среднего профессионального образования Новосибирской области «Барабинский медицинский колледж»

Цикловая методическая комиссия общих гуманитарных, социально-экономических дисциплин

МЕТОДИЧЕСКАЯ РАЗРАБОТКА комбинированного занятия

Дисциплина: Физика **Раздел 3**. Электродинамика

Тема 3.5 Электрический ток в металлах. Термоэлектричество. Электрический ток в электролитах. Электролиз.

для специальности: «Сестринское дело», «Акушерское дело» по программе базовой подготовки

курс 1

Рассмотрена	на заседании
ЦМК ОГСЭД	Ţ
Протокол №	
От	20г.
Председател	ь ЦМК
(Ф. И. О.)	

Разработчик: преподаватель Вашурина Т. В.

Содержание

Методический лист	4
Формирование требований ФГОС при изучении темы	5
Выписка из тематического плана дисциплины «Физика»	6
Схема интегративных связей темы	7
Актуальность изучения темы	8
Примерная хронокарта занятия	9
Блок информации по теме	12
План самостоятельной работы студентов	16
Приложение №1	17
Приложение №2	18
Приложение №3	19
Приложение №4	20
Домашнее задание	21
Перечень оборудования и оснащения	21
Перечень литературы	22

Методический лист

Тема 3.5 Электрический ток в металлах. Термоэлектричество. Электрический ток в электролитах. Электролиз.

Вид занятия: комбинированный урок.

Уровень усвоения информации: первый (узнавание ранее изученных объектов, свойств) + второй (выполнение деятельности по образцу, инструкции или под руководством)

Образовательные цели: установить различия условиях В существования электрического тока в твердых и жидких телах; определить, OTкаких параметров зависит сопротивление проводника, рассказать о явлении сверхпроводимости; выяснить частицы являются носителями тока В электролитах; отработать решения задач на закон электролиза; навык организовывать собственную деятельность, выбирать методы и способы решения задач, оценивать их выполнение и качество при выполнении упражнений.

Воспитательные цели: развивать коммуникативные способности организацию работы через В малых группах; создавать содержательные организационные условия И ДЛЯ развития самостоятельности в добывании студентами знаний, скорости восприятия и переработки информации, культуры речи, воспитании настойчивости в достижении цели; формировать умение работать в коллективе, команде.

Развивающие цели: развивать активность студентов, умения анализировать, сравнивать, делать выводы и обобщать.

Формирование требований ФГОС при изучении темы «Электрический ток в металлах. Термоэлектричество. Электрический ток в электролитах. Электролиз»

В результате изучения темы обучающийся должен знать:

- смысл понятий: электрический ток в металлах, в электролитах;
- условия существования термоэлектричества;
- историю открытия сверхпроводимости проводника, область применения;
- смысл понятия электролиз.

В результате изучения темы обучающийся должен уметь:

- описывать и объяснять результат эксперимента с электролизом;
- приводить примеры применения электролиза;
- применять полученные знания для решения физических задач;
- воспринимать и на основе полученных знаний самостоятельно оценивать информацию, содержащуюся в сообщениях СМИ, научно-популярных статьях;
- использовать новые информационные технологии для поиска, обработки и предъявления информации по физике в компьютерных базах данных и сетях (сети Интернета).

Изучение темы 3.5 способствует формированию у обучающихся следующих общих компетенций:

- **ОК 2.** Организовывать собственную деятельность, выбирать типовые методы и способы выполнения задач, оценивать их выполнение и качество.
 - ОК 6. Работать в коллективе и команде.

Выписка из тематического плана дисциплины «Физика» специальность сестринское дело, акушерское дело

Наименование разделов	Содержание учебного	Объем	Урове
и тем	материала, лабораторные и	часов	нь
	практические работы,		освоения
	самостоятельная работа		
	обучающихся, курсовая работ		
Tarra 2.5	(проект) (если предусмотрены)	2	1.2
Тема 3.5	Содержание учебного	2	1,2
Электрический ток в	материала		
металлах.	Электрическая проводимость		
Термоэлектричество.	металлов, электролитов.		
Электрический ток в	Понятие электролиза. Закон		
электролитах.	электролиза. Формирование		
Электролиз	умения применять на		
	практике теоретические		
	знания.		
	Лабораторная работа	-	
	Практическое занятие	1	
	Контрольная работа	1	
	Самостоятельная работа	2	
	обучающихся: чтение и		
	конспектирование текста		
	учебника, решение заданий		
	по образцу.		

Схема интегративных связей темы

Актуальность изучения темы

При изучении данной темы, обучающие должны усвоить теоретические вопросы, связанные с основными положениями классической электронной теории, прохождением электрического тока в металлах, их сопротивлением, выяснение механизма электропроводности растворов электролитов и их сопротивление, явление электролиза, закон Фарадея. Применение электролиза в технике изучается учащимися самостоятельно при подготовке сообщений по темам: рафинирование меди; электролитическая полировка; электрометаллургия.

Исследование высокотемпературных сверхпроводников (ВТСП) — одна из актуальных проблем современной фундаментальной физики и конкретно физики твердого тела. Эта типичная теоретическая проблема, как и многие другие, тесно связана с так называемой прикладной физикой. Естественно, соответствующая работа ведется во всем мире, и в частности в России. В настоящее время вопросы, связанные с энергией, ее получением и потреблением, занимают видное место. В частности, для экономии энергии при прохождении электрического тока по проводам и вообще всегда, когда речь идет об электроприборах и линиях передач, необходимо как можно сильнее уменьшить потери электроэнергии, происходящие за счет ее перехода в тепло. Для этого в первую очередь нужно иметь проводники с минимальным сопротивлением. Можно догадаться, какую роль могли бы играть сверхпроводящие материалы, вообще лишенные сопротивления. Такие вещества существуют, что было выяснено еще в 1911 году.

Блок информации.

План изложения учебного материала по теме «Электрический ток в металлах. Термоэлектричество. Электрический ток в электролитах. Электролиз»

- 1. Электрическая проводимость различных веществ (схема).
- 2. Электронная проводимость металлов (схема опытов, видеоролик).
- 3. Зависимость сопротивления проводника от температуры. Сверхпроводимость (видеоролик, доклад).
- 4. Электрический ток в электролитах.
- 5. Закон электролиза Фарадея. Применение (доклад).

1. Электрическая проводимость различных веществ (схема).

Электрический ток проводят твердые, жидкие и газообразные тела. Чем эти проводники отличаются друг от друга?

познакомились c электрическим током металлических установленной экспериментально проводниках вольт-амперной характеристикой этих проводников законом Ома. Металлические проводники находят самое широкое применение в передаче электроэнергии тока к потребителям. Кроме того, эти проводники используются в электродвигателях и генераторах, электронагревательных приборах и т. д.

Наряду с металлами хорошими проводниками, т. е. веществами с большим количеством свободных заряженных частиц, являются водные растворы или расплавы электролитов и ионизованный газ - плазма. Эти проводники также широко используются в технике.

Кроме проводников и диэлектриков (веществ со сравнительно небольшим количеством свободных заряженных частиц), имеется группа веществ, проводимость которых занимает промежуточное положение между проводниками и диэлектриками. Эти вещества не настолько хорошо проводят электричество, чтобы их назвать проводниками, но и не настолько плохо, чтобы их отнести к диэлектрикам. Поэтому они получили название полупроводников.

2. Электронная проводимость металлов (схема опытов, видеоролик).

Носителями свободных зарядов в металлах являются электроны. Их концентрация велика — порядка 10^{28} 1/м3. Эти электроны участвуют в беспорядочном тепловом движении. Под действием электрического поля они начинают перемещаться упорядоченно со средней скоростью порядка 10^{-4} м/с.

Экспериментальное доказательство существования свободных электронов в металлах (схема опытов в учебнике). На катушку наматывают

проволоку, концы которой припаивают к двум дискам, изолированным друг от друга. К концам дисков при помощи скользящих контактов присоединяют гальванометр. Катушку приводят в быстрое движение, а затем резко останавливают. После резкой остановки катушки свободные заряженные частицы некоторое время движутся относительно проводника по инерции, и, следовательно, в катушке возникает электрический ток. Ток существует незначительное время, так как из-за сопротивления проводника заряженные частицы тормозятся и упорядоченное движение частиц, образующее ток, прекращается. Движение электронов в металле (видеоролик).

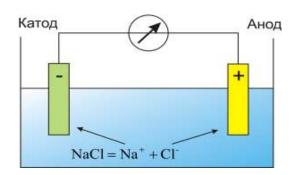
Электроны под влиянием постоянной силы, действующей на них со стороны электрического поля, приобретают определенную скорость упорядоченного движения. Эта скорость не увеличивается в дальнейшем со временем, т.к. со стороны ионов кристаллической решетки на электроны действует некоторая тормозящая сила. Эта сила подобна силе сопротивления, действующей на камень, когда он тонет в воде. Вывод: проводимость металлов — электронная.

3. Зависимость сопротивления проводника от температуры. Сверхпроводимость (видеоролик, доклад).

Если пропустить ток от аккумулятора через стальную спираль, а затем начать нагревать ее в пламени горелки, то амперметр покажет уменьшение силы тока. Это означает, что с изменением температуры сопротивление проводника меняется.

При нагревании проводника его геометрические размеры меняются незначительно. Сопротивление проводника меняется в основном за счет изменения его удельного сопротивления. Можно найти зависимость этого удельного сопротивления от температуры: рис.16.2 учебника.

Удельное сопротивление металлов растет линейно с увеличением температуры. У растворов электролитов оно уменьшается при увеличении температуры. Но как поведет себя металл при уменьшении температуры (при ее стремлении к абсолютному нулю (-273 °C))?


В 1911 г. голландский физик Камерлинг-Оннес открыл замечательное явление — сверхпроводимость. Он обнаружил, что при охлаждении ртути в жидком гелии ее сопротивление сначала меняется постепенно, а затем при температуре 4,1 К очень резко падает до нуля. Это явление было названо сверхпроводимостью. Позже было открыто много других сверхпроводников. Сверхпроводимость наблюдается при очень низких температурах — около 25К. Доклад и обсуждение видеоролика.

Вывод: если бы удалось создать сверхпроводящие материалы, действующие при температурах, близких к комнатным, то передача энергии по проводам осуществлялась бы без потерь. В настоящее время физики работают над этим.

4. Электрический ток в электролитах.

Электролитами принято называть проводящие среды, в которых протекание электрического тока сопровождается переносом вещества. Носителями свободных зарядов в электролитах являются положительно и отрицательно заряженные ионы.

Основными представителями электролитов, широко используемыми в технике, являются водные растворы неорганических кислот, солей и оснований. Прохождение электрического тока через электролит сопровождается выделением веществ на электродах. Это явление получило название электролиза (рис.).

Электрический ток в электролитах представляет собой перемещение ионов обоих знаков в противоположных направлениях. Положительные ионы движутся к отрицательному электроду (катоду), отрицательные ионы – к положительному электроду (аноду). Ионы обоих знаков появляются в водных растворах солей, кислот и щелочей в результате расщепления части нейтральных молекул. Это явление называется электролитической диссоциацией.

5. Закон электролиза Фарадея. Применение (доклад).

Закон электролиза был экспериментально установлен английским физиком М. Фарадеем в 1833 году.

Закон Фарадея определяет количества первичных продуктов, выделяющихся на электродах при электролизе: масса т вещества, выделившегося на электроде, прямо пропорциональна заряду q, прошедшему через электролит:

$$m = kq = kIt$$
,

где k – электрохимический эквивалент вещества.

Применение электролиза (доклад):

Электрохимические процессы широко применяются в различных областях современной техники, в аналитической химии, биохимии и т. д В цветной металлургии электролиз используется для извлечения металлов из руд и их очистки. Электролизом расплавленных сред получают алюминий, магний, титан, цирконий, уран, бериллий и др.

Для рафинирования (очистки) металла электролизом из него отливают пластины и помещают их в качестве анодов в электролизер. При пропускании тока металл, подлежащий очистке, подвергается анодному растворению, т. е. переходит в раствор в виде катионов. Затем эти катионы металла разряжаются на катоде, благодаря чему образуется компактный осадок уже чистого металла. Примеси, находящиеся в аноде, либо остаются нерастворимыми, либо переходят в электролит и удаляются.

Гальванотехника — область прикладной электрохимии, занимающаяся процессами нанесения металлических покрытий на поверхность как металлических, так и неметаллических изделий при прохождении постоянного электрического тока через растворы их солей. Гальванотехника подразделяется на гальваностегию и гальванопластику.

Гальваноствечя (от греч. покрывать) — это электроосаждение на поверхность металла другого металла, который прочно связывается (сцепляется) с покрываемым металлом (предметом), служащим катодом электролизера.

Гальванопластика — получение путем электролиза точных, легко отделяемых металлических копий относительно значительной толщины с различных как неметаллических, так и металлических предметов, называемых матрицами.

Кроме указанных выше, электролиз нашел применение и в других областях:

- получение оксидных защитных пленок на металлах (анодирование);
- электрохимическая обработка поверхности металлического изделия (полировка);
- электрохимическое окрашивание металлов (например, меди, латуни, цинка, хрома и др.);
- *очистка воды* удаление из нее растворимых примесей. В результате получается так называемая мягкая вода (по своим свойствам приближающаяся к дистиллированной);
- электрохимическая заточка режущих инструментов (например, хирургических ножей, бритв и т.д.).

План самостоятельной работы студентов Тема 3.5

Электрический ток в металлах. Термоэлектричество. Электрический ток в электролитах. Электролиз.

No	Название этапа	Описание этапа	Цель	Время
1	Актуализация опорных знаний.	Выполнение тестовых заданий исходного уровня знаний. Приложение №1.	Выявление степени усвоения материала по предыдущей теме.	10-15
2	Первичное закрепление знаний.	Самостоятельно отвечают на вопросы, затем вслух формулируют ответы к ним. Приложение №2.	Закрепление полученных знаний, формирование умений анализировать, сравнивать и обобщать.	5
3	Решение расчетных задач.	Самостоятельное решение задачи по образцу.	Отработка навыка решения задач по теме.	10
4	Контроль конечного уровня знаний, отчет.	Выполнение задания для итогового контроля. Приложение №3. Отчет о проделанной работе, взаимопроверка. Приложение №4.	Контроль усвоения знаний и умений учащихся. Выработка умения оценивать конечный результат выполнения заданий. Выявление степени достижения цели занятия.	15

Приложение №1

Тест по теме: ЭДС. Законы Ома. Сопротивление проводника. Зависимость сопротивления от температуры.

Вариант №1

- 1. Электрический ток это ...
- 1) тепловое, беспорядочное движение частиц
- 2) упорядоченное движение заряженных частиц
- 2. Какая единица принята за единицу силы тока?
- 1) джоуль
- 2) вольт
- 3) ампер
- 4) кулон
- 3. Вольтметр сопротивлением 80 кОм показывает значение 120 В. Вычислите силу тока на резисторе.

Вариант №2

- 1. За направление электрического тока принимают ...
- 1) направление движения положительно заряженных частиц
- 2) направление движения любых частиц
- 2. Чтобы получить электрический ток в проводнике, надо...
- 1) разделить в нём электрические заряды.
- 2) создать в нём электрическое поле.
- 3) создать в нём электрические заряды.
- 3. При напряжении на концах проводника 220 В сила тока 110А. Вычислите сопротивление проводника.

Эталоны ответов

<u>Вариант №1</u>

- 1. Электрический ток это ...
- 2) упорядоченное движение заряженных частиц
- 2. Какая единица принята за единицу силы тока?
- **3**) ампер

3. Задача

Дано:	СИ	Решение:
R = 80 kOm	80000 Ом	I = U/R
U = 120 B		I = 120 B / 80000 Om = 0,0015 A =
Найти: I = ?		= 1,5 MA
		Ответ: I = 1,5 мА

Вариант №2

- 1. За направление электрического тока принимают ...
- 1) направление движения положительно заряженных частиц
- 2. Чтобы получить электрический ток в проводнике, надо...
- 2) создать в нём электрическое поле.

3. Задача

Дано:	СИ	Решение:
I = 110 A		I = U / R; $R = I / U$
U = 220 B		R = 110 / 220 = 0.5 Om
Найти: R = ?		Ответ: R = 0,5 Ом

Приложение №2 Вопросы для первичного закрепления материала.

- 1. Вещества, проводящие электрический ток это ... (проводники: металлы, растворы электролитов, ионизированный газ плазма)
- 2. Металлы проводят электрический ток, потому что внутри них есть ... (свободные электроны)
- 3. Проводимость электролитов ... (ионная)
- 4. Как меняется удельное сопротивление металлов с ростом температуры? (увеличивается)
- 5. Как меняется удельное сопротивление электролитов с ростом температуры? (уменьшается)
- 6. Явление резкого падения сопротивления вещества при очень низких температурах называется ... (сверхпроводимостью)
- 7. Проблемы создания сверхпроводящих материалов? (...)
- 8. Прохождение электрического тока через электролит, сопровождающееся выделением вещества на электродах, называется ... (электролизом).
- 9. Закон электролиза Фарадея позволяет определить ... (массу выделившегося вещества)
- 10. Электролиз применяется ... (рафинирования (очистки) металла, Гальваностегия, Гальванопластика, анодирование, полировка, электрохимическое окрашивание металлов, очистка воды, электрохимическая заточка режущих инструментов)

Приложение №3 Тест для итогового контроля

Вариант №1

- 1. Какими частицами создаётся ток в металлах? Выберите правильное утверждение.
- *А. Только электронами. Б. Электронами и положительными ионами.*
 - В. Электронами и отрицательными ионами. Г. Ионами обоих знаков.
 - Д. Электронами и ионами обоих знаков.
- 2. Как меняется сопротивление металла при его охлаждении? Выберите правильное утверждение.
 - А. Сопротивление увеличивается
- Б. Сопротивление уменьшается
- 3. При прохождении через какие среды электрического тока происходит перенос вещества?
 - А. Через любые среды
 - Б. Через металл
 - В. Через раствор электролита
- 4. Выделение вещества на электродах, находящихся в растворе, называется ...
 - А Проводимостью.
 - Б Электролитической диссоциацией.
 - В Рекомбинацией.
 - Γ Электролизом.
- 5. Решить задачу. При силе тока 16 A на катоде за 10 мин отложилась медь массой 0,316 г. Определите электрохимический эквивалент меди. $(3,3*10^{-7} \mathrm{kr/Kn})$

Вариант №2

- 1. Какими частицами создаётся ток в электролитах? Выберите правильное утверждение.
- А. Только электронами.
- Б. Электронами и положительными

ионами.

- В. Электронами и отрицательными ионами. Г. Ионами обоих знаков.
- Д. Электронами и ионами обоих знаков.
- 2. Как меняется сопротивление металла при его нагревании? Выберите правильное утверждение.
 - А. Сопротивление увеличивается
- Б. Сопротивление уменьшается
- 3. Электрод, соединенный с отрицательным полюсом источника тока, называют...
 - А. Анодом
 - Б. Ионом
 - В. Катодом
- 4. Закон Фарадея гласит: ...
- A Электрохимические эквиваленты веществ прямо пропорциональны их химическим эквивалентам.
- *Б Масса вещества, выделившегося на электроде, обратно прямо пропорциональна заряду, прошедшему через электролит.*
- В Масса вещества, выделившегося на электроде, прямо пропорциональна заряду, прошедшему через электролит.
 - Γ Нет правильного ответа.
- 5. Решить задачу. При серебрении изделия на катоде за 30 мин отложилось серебро массой 4,55 г. Определите силу тока при электролизе, если электрохимический эквивалент серебра $11,2*10^{-7}$ кг/Кл. $(2,26~\mathrm{A})$

Приложение №4 Эталоны ответов к итоговому тесту

Вариант №1

- 1. Какими частицами создаётся ток в металлах? Выберите правильное утверждение.
- А. Только электронами.
- 2. Как меняется сопротивление металла при его охлаждении? Выберите правильное утверждение.
 - Б. Сопротивление уменьшается
- 3. При прохождении через какие среды электрического тока происходит перенос вещества?
 - В. Через раствор электролита
- 4. Выделение вещества на электродах, находящихся в растворе, называется ...

Г Электролизом.

5. $k = 3,3 * 10^{-7} \kappa \Gamma / K \pi$

Вариант №2

- 1. Какими частицами создаётся ток в электролитах? Выберите правильное утверждение.
 - Г. Ионами обоих знаков.
- 2. Как меняется сопротивление металла при его нагревании? Выберите правильное утверждение.
 - А. Сопротивление увеличивается
- 3. Электрод, соединенный с отрицательным полюсом источника тока, называют...
 - В. Катодом
- 4. Закон Фарадея гласит: ...

В Масса вещества, выделившегося на электроде, прямо пропорциональна заряду, прошедшему через электролит.

5. Ответ: I = 2,26 A

Критерии оценки: 3 правильных ответа – «3» балла

4 правильных ответа – «4» балла

5 правильных ответов – «5» баллов

Домашнее задание

Цель: Определить объем информации для самостоятельной работы, обратить внимание на значимые моменты.

На оценку «3»: Г. Я. Мякишев, Б. Б. Буховцев, Н. Н. Соцкий, Физика. 10 класс. Учебник для общеобразовательных учреждений (с приложением на электронном носителе). Базовый и профильный уровни - М.: Просвещение, 2011 г. &109, 110, 119,120 читать, конспект учить.

На оценку «4»: Г. Я. Мякишев, Б. Б. Буховцев, Н. Н. Соцкий, Физика. 10 класс. Учебник для общеобразовательных учреждений (с приложением на электронном носителе). Базовый и профильный уровни - М.: Просвещение, 2011 г. &109, 110, 119,120 читать, пересказ, конспект учить, упр. 20 (4)

На оценку «5»: Г. Я. Мякишев, Б. Б. Буховцев, Н. Н. Соцкий, Физика. 10 класс. Учебник для общеобразовательных учреждений (с приложением на электронном носителе). Базовый и профильный уровни - М.: Просвещение, 2011 г. &109, 110, 119,120 читать, пересказ, конспект учить, упр. 20 (4, 7)

Вопросы самоконтроля:

- 1. Электронная проводимость металлов.
- 2 Зависимость сопротивления проводника от температуры.
 Сверхпроводимость.
- 3. Электрический ток в электролитах.
- 4. Закон электролиза Фарадея. Применение.

Перечень оборудования и оснащения

- 1. Доска
- 2. Демонстрационные таблицы «Электрический ток в металлах», «Электрический ток в электролитах»
- 3. Компьютерное и мультимедийное оборудование
- 4. Электронное учебное пособие (приложение к учебнику)
- 5. Мультимедийная презентация
- 6. Тестовые задания

Литература

Основные источники:

- 1. Г. Я. Мякишев, Б. Б. Буховцев, Н. Н. Соцкий, Физика. 10 класс. Учебник для общеобразовательных учреждений (с приложением на электронном носителе). Базовый и профильный уровни М.: Просвещение, 2011 г.
- 2. Рымкевич А. П. Сборник задач по физике М.: Просвещение, 2003.
- 3. Г.И. Степанова. Сборник задач по физике 9-11 класс М.: Просвещение, 2007г.

Дополнительные источники:

Электронное учебное пособие (приложение к учебнику Г. Я. Мякишев, Б. Б. Буховцев, Н. Н. Соцкий, Физика. 10 класс)

Примерная хронокарта занятия по теме « Электрический ток в металлах. Термоэлектричество. Электрический ток в электролитах. Электролиз» (время занятия 90 минут)

№	Этапы занятия Деятельность		Цель этапа занятия	Оснащение этапа	Мин.	
		преподавателя	студентов			
1	Орг. момент.	Приветствие. Проверка готовности аудитории.	Дежурный информирует об отсутствующих. Контроль внешнего вида студентов.	Мобилизация внимания, выявление готовности аудитории к занятию.	Журнал группы.	1-2
2	Актуализация опорных знаний.	Проводит фронтальный опрос, раздает варианты тестовых заданий, проводит инструктаж по выполнению работы, определяет временные рамки выполнения задания.	Отвечают устно, выполняют письменное задание в тетрадях для контрольных работ.	Выявление степени подготовки студентов к занятию и степень усвоения материала по предыдущей теме. Развитие грамотной речи обучающихся, самоконтроль своих знаний.	Вопросы для фронтального опроса, тесты для контроля (Приложение №1)	10-15
3	Сообщение темы занятия, постановка цели, обозначение актуальности данной темы, определение интегративных связей.	Сообщает тему занятия, определяет цель, обосновывает значимость изучаемой темы.	Слушают, записывают дату и тему занятия в рабочих тетрадях.	Обозначить цель занятия, заинтересовать обучающихся, сконцентрировать их внимание.	Методическая разработка, мультимедийное оборудование, мультимедийная презентация.	2-3
4	Изучение нового материала по плану.	Излагает новый материал, демонстрирует презентацию, видеофрагменты с	Слушают, конспектируют, зачитывают доклады (или презентации, 2	Установить различия в условиях существования электрического тока в твердых и жидких телах;	Методическая разработка (блок информации), мультимедийное	20

		опытами	чел)	определить, от каких параметров зависит сопротивление проводника, рассказать о явлении сверхпроводимости; выяснить какие, частицы являются носителями тока в электролитах.	оборудование, мультимедийная презентация, ЭОР, плакаты.	
5	Первичное закрепление знаний	Задает вопросы, помогает студентам грамотно сформулировать ответы.	Отвечают на вопросы, задают вопросы.	Первичное закрепление и систематизация материала, ликвидация пробелов в понимании в полученных знаниях.	Методическая разработка (вопросы для первичного закрепления материала). Прил. №2	5
6	Решение расчетных задач на закон электролиза Фарадея.	Разбор задачи, алгоритма ее решения. Контролирует решение задач студентами, указывает на ошибки.	Работают на местах и у доски.	Отработать навык решения задач на закон электролиза; организация собственной деятельности, выбор типовых методов и способов решения задач, оценка их выполнения.	Слайды презентации с текстами заданий.	20
7	Задание на самостоятельную работу.	Раздает контролирующий материал, проводит инструктаж по выполнению работы, определяет время самостоятельной работы студентов.	Слушают преподавателя, задают вопросы.	Развитие скорости восприятия и переработки информации, пунктуальности.	Слайд презентации с инструкциями, задания для самостоятельной работы студентов (Приложение №3)	2
8	С. р. Контроль текущих теоретических и практических знаний, контроль	Контролирует ход работы, помогает, указывает на ошибки.	Работают в малых группах, используют текст учебника, решают задачи по образцу.	Закрепление материала, формирование умения делать выводы, обобщать. Формирование умения работать в команде.	Тесты для итогового контроля. Приложение №3	15

	конечного уровня			Контроль усвоения знаний		
	знаний, отчет.			и умений учащихся.		
9	Итоговый контроль.	Контролирует	Предоставляют	Закрепление знаний по	Слайд презентации с	3
		взаимопроверку, поясняет	выполненное задание,	теме, выявление степени	эталонами ответов	
		критерии оценки.	сопоставляют ответы с	усвоения материала.	(приложение №4).	
			эталонами, выставляют			
			оценки.			
10	Подведение итогов	Оценивает работу группы	Слушают, задают	Развитие эмоциональной	Журнал группы.	3
	занятия,	в целом, индивидуально,	вопросы, участвуют в	устойчивости,		
	выставление оценок.	обоснование полученных	обсуждении.	объективности оценки		
		студентами оценок.		своих действий, умения		
				работать в малых группах,		
				команде.		
11	Домашнее задание	Проводит инструктаж по	Слушают, записывают,	Оптимизация	Слайд презентации с	2
		выполнению домашнего	задают вопросы.	самоподготовки,	дифференцированным	
		задания.		определение объема	домашним заданием.	
				самостоятельной		
				внеаудиторной работы.		

"Электрический ток в металлах. Термоэлектричество. Электрический ток в электролитах. Электролиз"

Проверка домашнего задания

1. Фронтальный опрос.

■ 2. Тестирование по теме: «Постоянный ток. Законы постоянного тока. Сила тока. Условия, необходимые для существования тока. Виды соединения проводников». (тест №1)

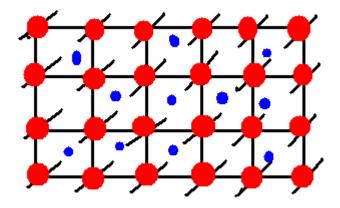
Тестовая работа в 2-х вариантах выполняется в тетрадях для контрольных работ, время выполнения 10 минут.

Тема: "Электрический ток в металлах. Термоэлектричество. Электрический ток в электролитах. Электролиз"

Цели учебного занятия:

- Установить различия в условиях существования электрического тока в твердых и жидких телах;
- Ознакомиться с явлением сверхпроводимости;
- Научиться применять формулу закона электролиза при решении расчетных задач.

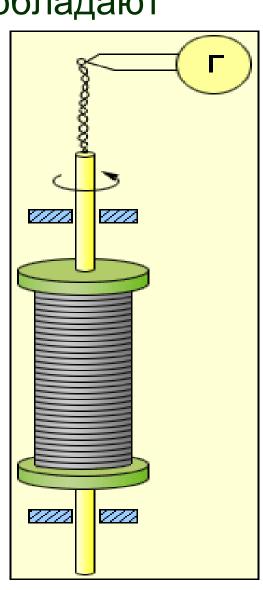
ЭЛЕКТРИЧЕСКАЯ ПРОВОДИМОСТЬ РАЗЛИЧНЫХ ВЕЩЕСТВ.



Электрический ток в металлах.

- Электрический ток в металлах это упорядоченное движение свободных электронов под действием электрического поля.
- Опыты показывают, что при протекании тока по металлическому проводнику не происходит переноса вещества, следовательно, ионы металла не принимают участия в переносе электрического заряда.

СТРОЕНИЕ МЕТАЛЛА


- 👛 положительный ион
 - ЭЛЕКТРОН

Опыты Толмена и Стюарта являются доказательством того, что металлы обладают

электронной проводимостью.

Катушка с большим числом витков тонкой проволоки приводилась в быстрое вращение вокруг своей оси. Концы катушки с помощью гибких проводов были присоединены к чувствительному баллистическому гальванометру Г. Раскрученная катушка резко тормозилась, и в цепи возникал кратковременных ток, обусловленный инерцией электронов.

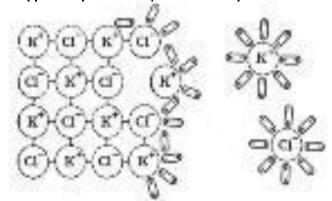
(видеофрагмент)

Выводы:

- 1.Носителями заряда в металлах являются электроны;
- 2. Скорость электронов не увеличивается со временем;
- 3. Проводимость металлов электронная.

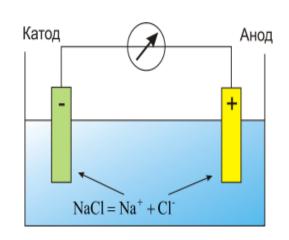
Техническое применение электрического тока в металлах: обмотки двигателей, трансформаторов, генераторов, проводка внутри зданий, сети электропередачи, силовые кабели.

Электрический ток в жидкостях


Электролитами принято называть проводящие среды, в которых протекание электрического тока сопровождается переносом вещества. Носителями свободных зарядов в электролитах являются положительно и отрицательно заряженные ионы. Электролитами являются водные растворы неорганических кислот, солей и щелочей.

электролиты

водные растворы электрлитов


Явление электролиза

это выделения на электродах веществ, входящих в состав электролита;
 Положительно заряженные ионы под действием электрического поля стремятся к отрицательному катоду, а отрицательно заряженные ионы - к положительному аноду.

На аноде отрицательные ионы отдают лишние электроны (окислительная реакция)

На катоде положительные ионы получают недостающие электроны (восстановительная).

(видеофрагмент)

Закон электролиза Фарадея

 Закон электролиза определяет массу выделившегося вещества за всё время прохождения электрического тока через электролит.

$$m = k q = k I \Delta t$$

■ где m – масса [кг] , I – сила тока [А] ,

∆t – промежуток времени [c], k – коэффициент пропорциональности, численно равный массе вещества, выделившегося на электроде при прохождении через электролит заряда в 1 Кл (в табл.)

Выводы:

- 1. Носители заряда в электролитах положительные и отрицательные ионы;
- 2. Проводимость электролитов ионная.
- Применение электролиза (доклад):
 получение цветных металлов (очистка от примесей рафинирование);
 гальваноствегия получение покрытий на металле
 (никелирование, хромирование, золочение, серебрение и т.д.);
 гальванопластика получение отслаиваемых покрытий
 (рельефных копий);
- электрохимическая заточка хирургических инструментов .

Зависимость сопротивления проводника от температуры.

С изменением температуры сопротивление проводника меняется.

удельное сопротивление р

металлов линейно растет с ростом температуры.

ростом температуры.

ростом температуры.

Как поведет себя металл при уменьшении температуры?

Сверхпроводимость

■ В 1911 году голландский физик Камерлинг - Оннес открыл замечательное явление — сверхпроводимость.

Он обнаружил, что при охлаждении ртути в жидком гелии ее сопротивление сначала меняется постепенно, а затем при температуре 4,1 К резко падает до нуля. Это явление было названо сверхпроводимостью.

В настоящее время ученые работают над созданием сверхпроводящих материалов. (видеофрагмент)

Проблема:

Вывод:

Вопросы:

- 1. По проводимости электрического тока все вещества делятся на ...
- 2. Что представляет собой электрический ток в металлах?
- 3. Кто и каким образом доказал существование свободных электронов в металлах?
- 4. Где применяется электрический ток в металлах?
- 5. Проводимость электролитов обусловлена наличием в них ...
- 6. Удельное сопротивление металлов с ростом температуры ...
- 7. Удельное сопротивление электролитов с ростом температуры ...
- 8. Явление резкого падения сопротивления при очень низких температурах называется ...
- 9. Проблема при создании сверхпроводящих материалов ...
- 10. Прохождение электрического тока через электролит,
 сопровождающееся выделением вещества на электродах, называется...
- 11. Закон электролиза Фарадея позволяет определить ...
- 12. Электролиз применяется при ...

Решение задач

■ Задача № 1

За 10 мин. протекания тока через электролит на катоде отложилась медь массой 0,316 г. Электрохимический эквивалент меди $k = 3,3 *10^{-7}$ кг/Кл. Какую силу тока покажет амперметр, включенный последовательно с электролитической ванной?

■ Задача № 2

Определите массу серебра, выделившегося на катоде при электролизе азотнокислого серебра за время 2 часа, если к ванне приложено напряжение 1,2 В, а сопротивление ванны 5 Ом. Электрохимический эквивалент серебра 11,2 * 10⁻⁷ кг/Кл.

■ Задача №3 (самостоятельно)

Какой заряд q проходит через раствор серной кислоты (CUSO₄) за время t = 10 с если амперметр показывает силу тока l = 4 А. Какая масса меди m выделится при этом на катоде? Электрохимический эквивалент меди $k = 3,3 *10^{-7}$ кг/Кл.

Итоговый контроль знаний

Тестирование по теме: "Электрический ток в металлах. Термоэлектричество.
 Электрический ток в электролитах.
 Электролиз" (тест №2)

Тестовая работа в 2-х вариантах выполняется в тетрадях для контрольных работ, время выполнения **15 минут**.

Критерии оценки: «3» балла - 3 верно выполненных задания, «4» балла - 4 верно выполненных задания, «5» баллов - 5 верно выполненных заданий.

Вариант №1

Взаимопроверка

- 1. Какими частицами создаётся ток в металлах? Выберите правильное утверждение.
 - А. Только электронами.
- 2. Как меняется сопротивление металла при его охлаждении? Выберите правильное утверждение.
 - Б. Сопротивление уменьшается
- 3. При прохождении через какие среды электрического тока происходит перенос вещества?
 - В. Через раствор электролита
- 4. Выделение вещества на электродах, находящихся в растворе, называется ...
 - Г Электролизом.

■ 5. Ответ:k = 3,3 * 10⁻⁷кг/Кл

Вариант №2

- 1. Какими частицами создаётся ток в электролитах? Выберите правильное утверждение.
 - Г. Ионами обоих знаков.
- 2. Как меняется сопротивление металла при его нагревании? Выберите правильное утверждение.
 - А. Сопротивление увеличивается
- 3. Электрод, соединенный с отрицательным полюсом источника тока, называют...
 - В. Катодом

- 4. Закон Фарадея гласит: ...
 - В Масса вещества, выделившегося на электроде, прямо пропорциональна заряду, прошедшему через электролит.
- 5. Ответ: I = 2,26 A

■Подведение итогов занятия.

■Домашнее задание:

Конспект учить, Г. Я. Мякишев, Б. Б. Буховцев, Н. Н. Соцкий, Физика. 10 класс. Учебник (с приложением на электронном носителе) пар. 109, 110, 119,120 читать,

пересказ,

упр. 20 (4, 7*).

СПАСИБО ЗА ВНИМАНИЕ!